The lightlike geometry of spacelike submanifolds in Minkowski space

joint work with

Maria del Carmen ROMERO FUSTER (Valencia, Spain)

and Maria Aparecida SOARES RUAS (São Carlos, Brazil)

To Reiko MIYAOKA and Keizo YAMAGUCHI

Shyuichi IZUMIYA

Department of Mathematics,
Hokkaido University (SAPPORO, JAPAN)

February 6, 2011
1 Gaussian Differential Geometry; brief review

2 Lorentz-Minkowski space: \mathbb{R}^{n+1}_1

3 Spacelike submanifolds with codimension two

4 Spacelike submanifolds with general codimension

5 Spacelike submanifolds with codimension two, revisited
§1 Gaussian Differential Geometry; brief review

- \(X : U \rightarrow \mathbb{R}^n \): an embedding (hypersurface) \((U \subset \mathbb{R}^{n-1}: \text{open, } X(U) = M.)\)

- \(n(u) \): Unit normal vector at \(p = X(u) \).

- The Gauss map: \(G_M : U \rightarrow S^{n-1} : G_M(u) = n(u) \)

- \(S_p = -dG_M(u) : T_pM \rightarrow T_pM \): the shape operator.

- The Gauss-Kronecker curvature: \(K(p) = \det S_p \).

- The mean curvature: \(H(p) = \frac{1}{n-1} \text{Trace } S_p \).

- Related results on hypersurfaces: The Gauss-Bonnet theorem, The Weierstrass representation formula for a minimal surface, etc.

- For a general submanifolds \(M^s \subset \mathbb{R}^n \), consider the unit normal bundle \(N_1(M) \).

- The (generalized) Gauss map: \(G_{N_1(M)} : N_1(M) \rightarrow S^{n-1} : G_{N_1(M)}(p, \xi) = \xi \)

- The Lipschitz-Killing curvature at \((p, \xi) : K(p, \xi)\) (can be defined).

- The total (absolute) curvature of \(M \) at \(p \): \(K^*(p) = \int_{\xi \in N_1(M)_p} |K(p, \xi)| \text{d}\sigma_{n-s-1} \).

- The related results: The Chern-Lashof theorem, Convexity, Tightness etc.
§2 Lorentz-Minkowski space: \mathbb{R}^{n+1}_1

- $\mathbb{R}^{n+1}_1 = (\mathbb{R}^{n+1}, \langle , \rangle)$: Lorentz-Minkowski $n + 1$-space

- $\langle x, y \rangle = -x_0 y_0 + \sum_{i=1}^{n} x_i y_i$, where $x = (x_0, x_1, \ldots, x_n), y = (y_0, y_1 \ldots, y_n)$

- $x \in \mathbb{R}^{n+1}_1 \setminus \{0\}$ is

 \[
 \begin{cases}
 \text{spacelike} & \text{if } \langle x, x \rangle > 0 \\
 \text{lightlike} & \text{if } \langle x, x \rangle = 0 \\
 \text{timelike} & \text{if } \langle x, x \rangle < 0,
 \end{cases}
 \]

- For any lightlike vector x, define

 \[
 \tilde{x} = \left(1, \frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0}\right) \in S^{n-1}_+ = \{x = (x_0, x_1, \ldots, x_n) \mid \langle x, x \rangle = 0, x_0 = 1\}.
 \]

- **Hyperplane with pseudo normal** n: $HP(n, c) = \{x \in \mathbb{R}^{n+1}_1 | \langle x, n \rangle = c\}$ for any $n \in \mathbb{R}^{n+1}_1 \setminus \{0\}$ and $c \in \mathbb{R}$.

- $HP(n, c)$ is

 \[
 \begin{cases}
 \text{spacelike} & \text{if } n \text{ is timelike} \\
 \text{lightlike} & \text{if } n \text{ is lightlike} \\
 \text{timelike} & \text{if } n \text{ is spacelike},
 \end{cases}
 \]
§2 Lorentz-Minkowski space: \mathbb{R}^{n+1}_1

- **Pseudo-spheres** in \mathbb{R}^{n+1}_1:
 \[
 \begin{align*}
 H^n(-1) &= \{ x \in \mathbb{R}^{n+1}_1 | \langle x, x \rangle = -1 \} : \text{Hyperbolic n-space} \\
 S^n_1 &= \{ x \in \mathbb{R}^{n+1}_1 | \langle x, x \rangle = 1 \} : \text{de Sitter n-space} \\
 LC^* &= \{ x \neq 0 \in \mathbb{R}^{n+1}_1 | \langle x, x \rangle = 0 \} : \text{(open) lightcone}
 \end{align*}
 \]

- For any $x_1, x_2, \ldots, x_n \in \mathbb{R}^{n+1}_1$,
 \[
 x_1 \wedge x_2 \wedge \cdots \wedge x_n = \begin{vmatrix}
 -e_0 & e_1 & \cdots & e_n \\
 x_1^0 & x_1^1 & \cdots & x_1^n \\
 x_2^0 & x_2^1 & \cdots & x_2^n \\
 \vdots & \vdots & \cdots & \vdots \\
 x_n^0 & x_n^1 & \cdots & x_n^n \\
 \end{vmatrix}, \quad x_i = (x_i^0, x_i^1, \ldots, x_i^n).
 \]

- $x_1 \wedge x_2 \wedge \cdots \wedge x_n$ are pseudo orthogonal to any x_i ($i = 1, \ldots, n$).
- We choose $e_0 = (1, 0, \ldots, 0)$ as the future timelike vector field.
• $X : U \rightarrow \mathbb{R}^{n+1}_1$: a spacelike embedding ($U \subset \mathbb{R}^{n-1}_1$: open, $M = X(U)$).
• T_pM : a spacelike subspace at any point $p = X(u) \in M$.
• N_pM : the pseudo-normal space, a timelike plane (i.e., Lorentz plane).
• $N(M)$: the pseudo-normal bundle over M.
• $n^T(u) \in N_p(M)$: arbitrarily future directed unit timelike normal vector field.
• $n^S(u) \in N_p(M)$: the spacelike unit normal vector field defined by
 \[
 n^S(u) = \frac{n^T(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-1}}(u)}{||n^T(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-1}}(u)||}
 \]
• $\{n^T, n^S\}$: a pseudo-orthonormal frame field along M.
• $d(n^T \pm n^S)_u : T_pM \rightarrow T_p\mathbb{R}^{n+1}_1 = T_pM \oplus N_p(M)$: linear mapping.
• Consider the pseudo-orthogonal projection : $\pi^t : T_pM \oplus N_p(M) \rightarrow T_pM$
• $S_p(n^T, \pm n^S) = -\pi^t \circ d(n^T \pm n^S)^t_u : T_pM \rightarrow T_pM$: $(n^T, \pm n^S)$-shape operator
• The lightcone Gauss-Kronecker curvature with respect to \((n^T, n^S)\):

\[
K^\pm_\ell(n^T, n^S)(u) = \det S_p(n^T, \pm n^S).
\]

• The lightcone mean curvature with respect to \((n^T, n^S)\):

\[
H^\pm_\ell(n^T, n^S)(u) = \frac{1}{n - 1} \text{Trace } S_p(n^T, \pm n^S).
\]

• \(\overrightarrow{n}^T(u)\): another future pointed normal vector field; \((n^T \pm n^S) = (\overrightarrow{n}^T \pm \overrightarrow{n}^S) \in S^{n-1}_+\).

• The lightcone Gauss map: \(\overrightarrow{\Pi}^\pm: U \rightarrow S^{n-1}_+ : \overrightarrow{\Pi}^\pm(u) = (n^T \pm n^S)(u)\)

• \(\overrightarrow{S}^\pm_p = -\pi^t \circ d\overrightarrow{\Pi}^\pm_p: T_pM \rightarrow T_pM\): the normalized lightcone shape operator.

• The normalized lightcone Gauss-kronecker curvature: \(\widetilde{K}^\pm_\ell(u) = \det \widetilde{S}^\pm_p\).

• The normalized lightcone mean curvature: \(\widetilde{H}^\pm_\ell(u) = \frac{1}{n - 1} \text{Trace } \widetilde{S}^\pm_p\).
§3 Spacelike submanifolds with codimension two

Proposition (The relation between curvatures)

\[
\tilde{K}_\ell^\pm(u) = \left(\frac{1}{\ell_0^\pm(u)} \right)^{n-1} K_\ell^\pm(n^T, n^S)(u), \quad \tilde{H}_\ell^\pm(u) = \left(\frac{1}{\ell_0^\pm(u)} \right) H_\ell^\pm(n^T, n^S)(u),
\]

where \((n^T \pm n^S)(u) = (\ell_0^\pm(u), \ell_1^\pm(u), \ldots, \ell_n^\pm(u))\).

Corollary

1. \(\tilde{K}_\ell^\pm(u) = 0\) if and only if \(K_\ell^\pm(n^T, n^S)(u) = 0\).
2. \(\tilde{H}_\ell^\pm(u) = 0\) if and only if \(H_\ell^\pm(n^T, n^S)(u) = 0\).

- The flatness is independent of the choice of \(n^T(u)\).

Proposition

Suppose \(n = 3\). Let \(\mathcal{H}\) be the mean curvature vector along \(M\). Then

\[
\tilde{H}_\ell^\pm \equiv 0 \iff \mathcal{H} : \text{lightlike} \iff M : \text{a marginal trapped surface}.
\]
Example

(1) \(n^T \equiv v: \text{constant} \iff M \subset H(v : c): \text{a hypersurface in a spacelike hyperplane} \)

• Special case : \(n^T(u) = e_0 \Rightarrow H(e_0, 0) = \mathbb{R}^n_0: \text{Euclidean space} \)

• \(n^S(u) : \text{the ordinary unit normal in the Euclidean sense.} \)
 \[
 \tilde{K}^\pm(u) = K(u): \text{The Gauss-Kronecker curvature,} \\
 \tilde{H}^\pm(u) = \pm H(u): \text{The mean curvature.} \Rightarrow H \equiv 0: \text{Minimal surfaces}
 \]

(2) \(n^T(u) = X(u) \Rightarrow M = X(U) \subset H^n(-1): \text{a hypersurface in Hyperbolic space} \)

• \(\tilde{L}^\pm(u) = X(u) \pm n^S(u) : \text{the hyperbolic Gauss map} \)
 \[
 \tilde{K}^\pm(u) = \tilde{K}^\pm_h(u): \text{The horospherical Gauss-Kronecker curvature,} \\
 \tilde{H}^\pm(u) = \tilde{H}^\pm_h(u): \text{The horospherical mean curvature.} \\
 \Rightarrow \tilde{H}^\pm_h \equiv 0: \text{CMC} \pm 1 \text{ surfaces}
 \]

(3) \(n^S \equiv v: \text{constant} \iff M: \text{a spacelike hypersurface in a timelike hyperplane} \)

\(\Rightarrow \tilde{H}^\pm_\ell \equiv 0: \text{Maximal surfaces} \)

(4) \(n^S(u) = X(u) \Rightarrow M = X(U) \subset S^n_1: \text{a spacelike hypersurface in de Sitter space} \)

• \(\tilde{L}^\pm(u) = n^T(u) \pm X(u) : \text{the de Sitter horospherical Gauss map} \)
§3 Spacelike submanifolds with codimension two

- M: closed orientable $(n-1)$-manifold, $f: M \longrightarrow \mathbb{R}^{n+1}_1$: spacelike embedding.
- \mathbb{R}^{n+1}_1: time-oriented \Rightarrow globally exists $n^T: M \longrightarrow H^n(-1)$: future directed timelike unit normal vector field along $f(M)$.
- The *global lightcone Gauss map*:
 \[
 \widetilde{L}^\pm: M \longrightarrow S^{n-1}_+: \widetilde{L}^\pm(p) = n^T(p)\pm n^S(p).
 \]
- The *global normalized lightcone Gauss-Kronecker curvature function*:
 \[
 \widetilde{K}^\pm_\ell(p) = \det(-\pi^t \circ d\widetilde{L}_{p}^\pm).
 \]

Theorem (The Gauss-Bonnet type theorem)

M: a closed orientable, spacelike submanifold of codimension two in \mathbb{R}^{n+1}_1.

Suppose that n is odd. Then

\[
\int_M \widetilde{K}_\ell d\nu_M = \frac{1}{2} \gamma_{n-1} \chi(M),
\]

$\chi(M)$: the Euler characteristic of M, $d\nu_M$: the volume form of M, γ_{n-1}: the volume of the unit $(n-1)$-sphere S^{n-1}.
§4 Spacelike submanifolds with general codimension

• $X : U \rightarrow \mathbb{R}^{n+1}$: a spacelike embedding of codimension k ($U \subset \mathbb{R}^s$, $M = X(U)$)

• $N_p(M)$: the pseudo-normal space at $p = X(u)$, a k-dim Lorentz vector space.

• Two kinds of pseudo spheres:

\[
\begin{align*}
N_p(M; -1) &= \{ v \in N_p(M) \mid \langle v, v \rangle = -1 \} \\
N_p(M; 1) &= \{ v \in N_p(M) \mid \langle v, v \rangle = 1 \}
\end{align*}
\]

• Two unit normal spherical normal bundles over M:

\[
N(M; -1) = \bigcup_{p \in M} N_p(M; -1) \text{ and } N(M; 1) = \bigcup_{p \in M} N_p(M; 1).
\]

• Remark that $N_p(M; \pm 1)$ are non-compact \Rightarrow we cannot integrate on the fiber.

• 3 future directed unit timelike normal vector field $n^T(p) \in N_p(M; -1)$ (fix!!)

• $N_1(M)_p[n^T] = \{ \xi \in N_p(M; 1) \mid \langle \xi, n^T(p) \rangle = 0 \}$: $k - 1$-spacelike normal sphere.

• $N_1(M)[n^T] = \bigcup_{p \in M} N_1(M)_p[n^T]$: spacelike unit normal bundle w.r.t n^T

• Remark that $N_1(M)_p[n^T]$ is compact \Rightarrow we can integrate on the fiber.
The lightcone Gauss map of $N_1(M)[n^T]$:

$$\tilde{LG}(n^T) : N_1(M)[n^T] \to S_+^{n-1} : \tilde{LG}(n^T)(p, \xi) = n^T(p) + \xi$$

- $\Pi^t : \tilde{LG}(n^T)^* TR_{1}^{n+1} = TN_1(M)[n^T] \oplus \mathbb{R}^{k+1} \to TN_1(M)[n^T] :$ the projection.
- $\tilde{S}(n^T)(p, \xi) = -\Pi^t \circ d_{(p, \xi)} \tilde{LG}(n^T) : T_{(p, \xi)} N_1(M)[n^T] \to T_{(p, \xi)} N_1(M)[n^T] :$ the lightcone shape operator.
- $\tilde{K}_{\ell}(n^T)(p, \xi) = \det \tilde{S}(n^T)(p, \xi) :$ the lightcone Lipschitz-Killing curvature of $N_1(M)[n^T]$ at (p, ξ)

- Remark: We can apply the theory of Lagarangian/Legendrian singularities to investigate local properties of the lightcone Lipschitz-Killing curvature. However, we do not mention these results here.

Theorem

$$\tilde{LG}(n^T)^* dv_{S_+^{n-1}}(p, \xi) = |\tilde{K}_{\ell}(n^T)(p, \xi)| dv_{N_1(M)[n^T]}(p, \xi),$$

where $dv_{N_1(M)[n^T]} :$ the canonical volume form of $N_1(M)[n^T]$, $dv_{S_+^{n-1}} :$ the canonical volume form of S_+^{n-1}.

Shyuichi IZUMIYA (Hokkaido University)
§4 Spacelike submanifolds with general codimension

• ∃ a differential form $d\sigma_{k-2}(n^T)$ of degree $k - 2$ on $N_1(M)[n^T]$ s.t its restriction to a fiber is the volume element of the unit $k - 2$-sphere and

$$dv_{N_1(M)[n^T]} = dv_M \wedge d\sigma_{k-2}(n^T).$$

Proposition (Uniqueness)

Let n^T, \bar{n}^T be future directed unit timelike normal vector fields along M. Then we have

$$\int_{N_1(M)_p[n^T]} |\widetilde{K}_t(n^T)(p, \xi)| d\sigma_{k-2}(n^T) = \int_{N_1(M)_p[\bar{n}^T]} |\widetilde{K}_t(\bar{n}^T)(p, \bar{\xi})| d\sigma_{k-2}(\bar{n}^T).$$

• The total absolute lightcone curvature of M at p (well-defined):

$$K^*_t(p) = \int_{N_1(M)_p[n^T]} |\widetilde{K}_t(n^T)(p, \xi)| d\sigma_{k-2}(n^T).$$
§ 4 Spacelike submanifolds with general codimension

- \(f : M \longrightarrow \mathbb{R}^{n+1} \) (\(M \): \(s \)-dim closed orientable manifold): a spacelike immersion
- The total absolute lightcone curvature of \(M \):

\[
\tau_{\ell}(M, f) = \frac{1}{\gamma_{n-1}} \int_M K^*(p)dv_M = \frac{1}{\gamma_{n-1}} \int_{N_1(M)[n^T]} |\widetilde{K}_{\ell}(n^T)(p, \xi)|dv_{N_1(M)[n^T]},
\]

where \(\gamma_{n-1} \) is the volume of the unit \(n-1 \)-sphere \(S^{n-1} \).

Theorem (The Chern-Lashof type theorem)

1. \(\tau_{\ell}(M, f) \geq \gamma(M) \geq 2 \),
2. If \(\tau_{\ell}(M, f) < 3 \), then \(M \) is homeomorphic to the sphere \(S^s \), where \(\gamma(M) \) is the Morse number of \(M \).

- Problem: Suppose \(\tau_{\ell}(M, f) = 2 \).
 What kind of immersed spheres in \(\mathbb{R}^{n+1} \) we have?
- This problem leads the notion of lightlike convexity and lightlike tightness.
§4 Spacelike submanifolds with codimension two, revisited

- If \(s = n - 1 \), then \(N_1(M)[n^T] \) is a double covering of \(M \).
- \(\exists \sigma(p) = (p, n^S(p)) \): global section of \(N_1(M)[n^T] \). \(\Rightarrow K^*(p) = |\widetilde{K}^+(p)| + |\widetilde{K}^-(p)| \).
- The positive/or negative total absolute curvature of \(M \):
 \[
 \tau_{x}^{\pm}(M, f) = \frac{1}{\gamma_{n-1}} \int_M |\widetilde{K}| dv_M.
 \]

Theorem (The strong Chern-Lashof type theorem)

\[
\tau_{\ell}^{\pm}(M, f) \geq 1.
\]

- Remark that \(\exists M \) such that \(\tau_{\ell}^{+}(M, f) \neq \tau_{\ell}^{-}(M, f) \).
- Independent lightlike vectors \(v_i \ (i = 1, 2) \) ⇒ lightlike hyperplanes \(HP(v_i : c_i) \).
- If \(HP(v_1 : c_1) \cap HP(v_2 : c_2) \neq \emptyset \), then \(HP(v_1 : c_1) \cup HP(v_2 : c_2) \) divides \(\mathbb{R}^{n+1}_1 \) into 4 regions. \(; \) Two timelike regions and two spacelike regions.
- \(f(M) \) is lightlike convex if \(f(M) \) lies entirely in one of the closed half-spacelike regions determined by the tangent lightlike hypersurfaces of \(f(M) \) at any \(p \in M \).

Theorem

\[
\tau_{\ell}^{\pm}(M, f) = 1 \Leftrightarrow M \text{ is homeomorphic to } S^{n-1} \text{ and } f(M) \text{ is lightlike convex}.
\]
Thank you very much for your attention!

And

Happy birthday Reiko and Keizo!